
G. Zachmann 20 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Optimal Number of Voxels

!  Too many cells � slow traversal, heavy memory usage, bad
cache utilization

!  Too few cells � too many objects/triangles per cell

!  Good rule of thumb: choose the size of the cells such that the
edge length is about the average size of the objects (e.g.,
measured by their bbox)

!  If you don't know it (or it's too time-consuming to compute),
then choose cell edge length = , N = # objects

!  Another good rule of thumb: try to make the cells cuboid-like

3
�

N

G. Zachmann 21 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Teapot in a Stadium Problem

!  Problem: regular grids don't adapt well to large variations of
local "densities" of the geometry

G. Zachmann 22 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Recursive Grids

!  Idea:
!  First, construct a coarse grid, with cells larger

than rule-of-thumb suggests

!  Subdivide "dense" cells again by a finer grid

!  Stopping criterion: less than n objects/triangles
in the cell, or maximum depth

!  Additional Feature: subdivision "on
demand", i.e.,
!  In the beginning, create only 1-2 levels

!  If any ray hits a cell that does not fulfill the
stopping criteria, then subdivide cell by finer
grid Nested Grids

G. Zachmann 23 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Hierarchical Uniform Grid (HUG) [1994]

!  Problem: if the variance among object sizes is very large, then the
average object size is not a good cell size

!  Idea:

!  Group objects by size � "size clusters"

!  Group objects within a size cluster by location � local size clusters

!  Construct grid for each local size cluster

!  Construct hierarchy on top of these elementary grids

!  Example:

G. Zachmann 24 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Construction Time of Different Grids

balls gears mount

Uniform, D = 1.0 0.19 0.38 0.26

Uniform, D = 20.0 0.39 1.13 0.4

Recursive Grid 0.39 5.06 1.98

HUG 0.4 1.04 0.16

Quelle: Vlastimil Havran, Ray Tracing News vol. 12 no. 1, June 1999, http://www.acm.org/tog/resources/RTNews/html

D =

voxels

objects

G. Zachmann 25 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

rings teapot tetra tree

Uniform, D = 1.0 0.35 0.3 0.13 0.22

Uniform, D = 20.0 0.98 0.65 0.34 0.33

Recursive Grid 0.39 1.55 0.47 0.28

HUG 0.45 0.53 0.24 0.48

G. Zachmann 26 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Running Times of the Ray Tracing (sec)

Balls Gears Mount

Uniform, D = 1.0 244.7 201.0 28.99

Uniform, D = 20.0 38.52 192.3 25.15

Recursive Grid 36.73 214.9 30.28

HUG 34.0 242.1 62.31

G. Zachmann 27 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Rings Teapot Tetra Tree

Uniform, D = 1.0 129.8 28.68 5.54 1517.0

Uniform, D = 20.0 83.7 18.6 3.86 781.3

Rekursiv 113.9 22.67 7.23 33.91

HUG 116.3 25.61 7.22 33.48

Adaptive 167.7 43.04 8.71 18.38

G. Zachmann 28 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Proximity Clouds [1994]

!  Thought experiment:

!  Assumption: we are sitting on the ray at point P and we know that
there is no object within a ball of radius r around P

!  Then, we can jump directly to the point

!  Assumption: we know this "clearance" radius
for each point in space

!  Then, we can jump through space from
one point to its "clearance horizon"
and so on …

!  The general idea is called
empty space skipping

!  Comes in many different guises

d

P

X

X = P +
r

�d�d

G. Zachmann 29 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  The idea works with any other metric, too

!  Problem: we cannot store the clearance
radius in every point in space

!  Idea: discretize space by grid

! For each grid cell, store the minimum
clearance radius, i.e., the clearance radius
that works in any direction (from any point
within that cell)

"  Such a data structure is called a
distance field

!  Example:
3

1 1 1 1
2 2 2 2
3 3 3

3 4 4 4
3 3

1 1 1

G. Zachmann 30 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

General Rules for Optimization

!  "Premature Optimization is the Root of All Evil" [Knuth]

!  First, implement your algorithm naïve and slow, then optimize!

!  After each optimization, do a before-after benchmark!

-  Sometimes/often, optimization turn out to perform worse

! Only make small optimizations at a time!

!  Do a profiling before you optimize!

-  Often, your algorithm will spend 80% of the time in quite different places
than you thought it does!

!  First, try to find a smarter algorithm,
then do the "bit twiddling" optimizations!

Gabriel Zachmann
Optional

G. Zachmann 31 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Octree / Quadtree

!  Idea: the recursive grid taken to the extreme

!  Construction:

!  Start with the bbox of the whole scene

!  Subdivide a cell into 8 equal sub-cells

!  Stopping criterion: the number of objects, and
maximal depth

!  Advantage: we can make big strides through
large empty spaces

!  Disadvantages:

!  Relatively complex ray traversal algorithm

!  Sometimes, a lot of subdivisions are needed to
discriminate objects

G. Zachmann 32 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Octree/(Quadtree)

!  What about large objects in octrees?

!  Must be stored with inner nodes, or …

!  In leaves only, but then they need to be stored in many nodes

G. Zachmann 33 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The 5D Octree for Rays [Arvo u. Kirk 1987]

!  What is a ray?

!  Point + direction = 5-dim. object

!  Octree over a set of rays:

!  Construct bijective mapping between
directions and the direction cube:

!  All rays in the universe
are given by the set:

!  A node in the 5D octree in R = beam in 3D:

d

= +

S2 ⇤ D := [�1, +1]2 ⇥ {±x ,±y ,±z}

U = [0, 1]3

R = U � D

G. Zachmann 34 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Construction (6x):

!  Associate object with an octree node ⟷ object intersects the beam

!  Start with root = and the set of all objects

!  Subdivide node (32 children), if

-  too many objects are associated with the current node, and

-  the cell is too large.

-  Associate all objects with one or more children

!  The ray intersection test:

! Map ray to 5D point

!  Find the leaf in the 5D octree

!  Intersect ray with its associated objects

!  Optimizations …

U ⇥ [�1, +1]2

G. Zachmann 35 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Remarks

!  The method basically pre-computes a complete, discretized
visibility for the entire scene

!  I.e., what is visible from each point in space in each direction?

!  Very expensive pre-computation, very inexpensive ray traversal

!  The effort is probably not balanced between pre-computation and
run-time

!  Very memory intensive, even with lazy evaluation

!  Is used rarely in practice …

G. Zachmann 36 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

kD-Trees

!  Problem with grid: "teapot in a stadium"

!  Problem with octrees:

!  Very inflexible subdivision scheme
(always at the center of the father cell)

!  But subdivision in all directions is not always necessary

!  Solution: hierarchical subdivision that can adapt more flexibly to
the distribution of the geometry

!  Idea: subdivide space recursively by just one plane:

!  Subdivide given cell with a plane

!  Choose plane perpendicular to one coordinate axis

!  Free choices: the axis (x, y, z) & place along that axis

!  "Best known method" [Siggraph Course 2006]

! … at least for static scenes

G. Zachmann 37 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Informal definition:

!  A kd-tree is a binary tree, where

-  Leaves contain single objects (polygons) or a list of objects;

-  Inner nodes store a splitting plane (perpendicular to an axis) and child
pointer(s)

!  Stopping criterion:

-  Maximal depth, number of objects, some cost function, …

!  Advantages:

!  Adaptive

!  Compact nodes (just 8 bytes per node)

!  Simple and very fast ray traversal

!  Small disadvantage:

!  Polygons must be stored several times in the kd-tree

G. Zachmann 38 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Example

[Slide courtesy Martin Eisemann]

G. Zachmann 39 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

3D Visualization

G. Zachmann 40 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Ray-Traversal through a Kd-Tree

!  Intersect ray with root-box � tmin, tmax

!  Recursion:

!  Intersect ray with splitting plane � tsplit

!  We need to consider the following three cases:

a)  First traverse the "near", then the "far" subtree

b) Only traverse the "near" subtree

c)  Only traverse the "far" subtree

tmax

tmin

tsplit

far near

(a)

near

(b)

far

(c)

G. Zachmann 41 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Pseudo-Code für die Traversierung

traverse(Ray r, Node n, float t_min, float t_max):
 if n is leaf:
 intersect r with each primitive in object list,

 discarding those farther away than t_max
 return object with closest intersection point (if any)

 t_split = signed distance along r to splitting plane of n
 near = child of n containing origin of r // test signs in r.d
 far = the "other" child of n
 if t_split > t_max:
 return traverse(r, near, t_min, t_max) // (b)
 else if t_split < t_min:
 return traverse(r, far, t_min, t_max) // (c)
 else: // (a)
 t_hit = traverse(r, near, t_min, t_split)
 if t_hit < t_split:
 return t_hit // early ray terminat'n
 return traverse(r, far, t_split, t_max)

G. Zachmann 42 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Optimized Traversal

!  Observation:
! 90% of all rays are shadow rays

! Any hit is sufficient

!  Consequence:
! The order the children of the kD-tree are visited does not matter (in the

case of shadow rays) � perform pure DFS

!  Idea: replace the recursion by an iteration

!  Transform the tree to achieve that:

1

6 2

3 4 5

1

6 2

3 4 5

1

6 2

3 4 5

1

2

3

4

5

6

-

Gabriel Zachmann
Optional

G. Zachmann 43 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Algorithm:

traverse(Ray ray, Node root):
 stopNode = root.skipNode
 node = root
 while node < stopNode:
 if intersection between ray and node:
 if node has primitives:
 if intersection between primitive and ray:
 return intersection
 node ++
 else:
 node = node.skipNode
 return "no intersection"

Diplomarbeit …

Gabriel Zachmann
Optional

G. Zachmann 45 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Construction of a kD-Tree

!  Given:

!  An axis-lined BBox in the scene ("cell)

!  At the root, the box encloses the whole universe

!  List of the geometry primitives contained in this cell

!  The procedure:

1.  Choose an axis-aligned plane, with which to split the cell

2.  Distribute the geometry among the two children

! Some polygons need to be assigned to both children

3.  Do a recursion, until the stopping criterion is met

!  Remark: Each cell (whether leaf or inner node) defines a box,
without the box ever being explicitly stored anywhere

!  (Theoretically, such boxes could be half-open boxes, if we start at the
root with the complete space)

G. Zachmann 46 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

On Selecting a Splitting-Plane

!  Naïve Selection of the Splitting-Plane:

!  Splitting-Axis:

-  Round Robin (x, y, z, x, …)

-  Split along the longest axis

!  Split-Position:

-  Middle of the cell

-  Median of the geometry

!  Better: Utilize a Cost Function

! We should choose a splitting plane such that the expected costs of a
ray test are distributed equally among both subtrees

!  Try all 3 axes

!  Search for the minimum along each axis

!  Choose the axis and split-position with the smallest minimum

G. Zachmann 47 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Motivation der Kostenfunktion

G. Zachmann 48 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Split in the middle:

!  The probability of a ray hitting the left or the right child is equal

!  But, he expected costs for handling the left or the right child are very
different!

G. Zachmann 49 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Split along the geometry median:

!  The computational efforts for left or right child are equal

!  But not the probability of a hit

G. Zachmann 50 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Cost-optimized heuristic:

!  The total expected costs are approximately similar

-  Probability for a left hit is higher, but on the other hand there are less
polygons in the left child

G. Zachmann 51 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

The Surface Area Heuristic (SAH) [1990]

!  Question: How to measure the costs of a given kD-Tree?

!  Expected costs of a ray test:

!  Assume, we have reached cell B during the ray traversal

!  Cell B has children B1, B2

!  Expected costs = expected traversal time =

!  Assumptions in the following:

!  All rays have the same, far away origin

!  All rays hit the root-BV of the kD-tree

B1 B2

B

C (B) =Prob[intersection with B1]·C (B1)

+Prob[intersection with B2]·C (B2)

G. Zachmann 52 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Number of rays in a given direction that hit an

object is proportional to its projected area

!  Total "number" of rays, summed over

all possible directions =

where � = sum of all projected areas,

again summed over all possible directions

!  Crofton's theorem (integral geometry):

For convex objects, ,

where S = area of surface of object

!  Therefore, the probability is

A

4⇡Ā

Prob[intersection with B1 | intersection with B] =

Area(B1)

Area(B)

Ā = 1
4S

B

B1

G. Zachmann 54 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Solution of the "recursive" equation:

!  How to compute C(B1) and C(B2) respectively?

!  A simple heuristic: set

!  The complete Surface Area Heuristic :
minimize the following function when distributing the set of
polygons

C (B) = Area(B1)·N(B1) + Area(B2)·N(B2)

C (Bi) ⇡ # triangles in Bi

G. Zachmann 55 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

A Stopping Criterion

!  How to decide whether or not a split is worth-while?

!  Consider the costs of a ray intersection test in both cases:

!  No split � costs =

!  Split � costs =

where tp = time for 1 ray-primitive test
 ts = time for 1 intersection test of ray with
 splitting plane of the kD-tree node
 pB =probability, that the ray hits cell B
 N = number of primitives

!  In practice, we can make the following simplifying assumptions :
!  tp = const for all primitives

!  (determined by experiment)

A

B C

tpN

ts + tp(pBNB + pCNC)

tp : ts = 80 : 1

G. Zachmann 56 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Remarks

!  It suffices to evaluate the cost function (SAH) only at a finite set of
points

!  The points are the borders of the bounding boxes of the triangles

!  In-between, the value of the SAH must be worse

!  Sort all the Bboxes by their boundary coordinates, evaluate the
SAH at all these points (plane sweep)

!  Sorting allows golden section search and, thus, a faster evaluation

A

B

C

a0 b0 a1 b1 c0 c1

Gabriel Zachmann
Optional

G. Zachmann 57 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Warning: for other queries (e.g. points, boxes,…) the surface
area is not necessarily a good measure for the probability!

!  A straight-forward, better (?) heuristic:
make a „look-ahead“

B11 B21

B12 B22

Diplomarbeit …

C (B) =P[Schnitt mit B1]·C (B1)

+P[Schnitt mit B2]·C (B2)

=P[B1]·(P[B11]C (B11) + P[B12]C (B12))

+P[B2]·(P[B21]C (B21) + P[B22]C (B22))

. . .

G. Zachmann 58 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  If the number of polygons is very large (> 500,000, say) �
only try to find the approximate minimum [Havran et al., 2006]:

!  Sort polygons into "buckets"

!  Evaluate SAH only at the bucket borders

A
B

C

a0 b0 a1 b1 c0 c1

G. Zachmann 59 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Better kd-Trees for Raytracing [2005]

!  Before applying SAH, test whether an empty cell can be split off
that is "large enough" ; if yes, do that, no SAH-based splitting

!  Additional stopping criterion:

!  If volume of cell is too small, then no further splitting

!  Criterion for "too small" (e.g.): Vol(cell) < �. Vol(root)

!  Reason: such cells probably won't get hit anyway

!  Saves memory (lots) without sacrificing performance

!  For architectural scenes:

!  If there is a splitting plane that is covered completely by polygons,
then use it and put all those polygons in the smaller of the two
children cells

!  Reason: that way, cells adapt to the rooms of the buildings (s.a. portal
culling)

Gabriel Zachmann
Optional

G. Zachmann 60 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Storage of a kD-Tree

!  The data needed per node:

! One flag, whether the node is an inner node or a leaf

!  If inner node:

-  Split-Axis (uint),

-  Split-position (float),

-  2 pointers to children

!  If leaf:

-  Number of primitives (uint)

-  The list of primitives (pointer)

!  Naïve implementation: 16 Bytes + 3 Bits — very cache-inefficient

!  Optimized implementation:

!  8 Bytes per node (!)

!  Yields a speedup of 20% (some have reported even a factor of 10!)

G. Zachmann 61 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Idea of optimized storage: Overlay the data

!  Assemble all flags in 2 bits

!  Overlay flags, split-position, and number of primitives

flags
2

mantissa
23

exponent
8

s
1

Number of polygons
30

Inner nodes

Leaves

Both

union
{
 unsigned int m_flags; // both
 float m_split; // inner node
 unsigned int m_nPrims; // leaf
};

00 = "Leaf"
01 = "X axis"
10 = "Y axis"
11 = "Z axis"

G. Zachmann 62 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Für innere Knoten: nur 1 Zeiger auf Kinder

!  Verwalte eigenes Array von kd-Knoten (nicht malloc() oder new)

!  Speichere beide Kinder in aufeinanderfolgende Array-Zellen; oder

!  speichere eines der Kinder direkt hinter dem Vater.

!  Überlagere Zeiger auf Kinder mit Zeiger auf Primitive

!  Zusammen:
class KdNode
{
private:
 union {
 unsigned int m_flags; // both
 float m_split; // inner node
 unsigned int m_nPrims; // leaf
 };
 union {
 unsigned int m_rightChild; // inner node
 Primitive * m_onePrim; // leaf
 Primitive ** m_primitives; // leaf

Falls m_nPrims == 1

Falls m_nPrims > 1

Gabriel Zachmann
Optional

G. Zachmann 63 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

!  Achtung: Zugriff auf Instanzvariablen natürlich nur noch über Kd-
Node-Methoden!

!  Z.B.: beim Schreiben von m_split muß man darauf achten, daß danach
(nochmals) m_flags geschrieben wird (ggf. mit dem ursprünglichen
Wert)!

!  Beim Schreiben/Lesen von m_nPrims muß ein Shift durchgeführt
werden!

G. Zachmann 64 Acceleration Data Structures Advanced Computer Graphics 21 May 2014 SS

Spatial KD-Trees (SKD-Tree) [1987/2002/2006]

!  A variant of the kD-Tree

!  Other names: BoxTree, "bounding interval hierarchy" (BIH)

!  Difference to the regular kd-tree:
!  2 parallel splitting planes per node

!  Alternative: the 2 splitting planes
can be oriented differently

!  Advantage: "straddling" polygons
need not be stored in both subtrees
! With regular kD-trees, there are

2-3 . N more pointers to triangles than
there are triangles (N),
N = number of triangles in the scene

!  Disadvantage: Overlapping child boxes � the traversal can not
stop as soon as a hit in the "near" subtree has been found

L R

L R

max(L) min(R)

