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The Optimal Number of Voxels 

!  Too many cells � slow traversal, heavy memory usage, bad 
cache utilization 

!  Too few cells � too many objects/triangles per cell 

!  Good rule of thumb: choose the size of the cells such that the 
edge length is about the average size of the objects (e.g., 
measured by their bbox) 

!  If you don't know it (or it's too time-consuming to compute), 
then choose cell edge length =          ,  N = # objects 

!  Another good rule of thumb: try to make the cells cuboid-like 

3
�

N
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The Teapot in a Stadium Problem 

!  Problem: regular grids don't adapt well to large variations of 
local "densities" of the geometry 
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Recursive Grids 

!  Idea:  
!  First, construct a coarse grid, with cells larger 

than rule-of-thumb suggests 

!  Subdivide "dense" cells again by a finer grid 

!  Stopping criterion: less than n objects/triangles 
in the cell, or maximum depth 

!  Additional Feature: subdivision "on 
demand", i.e., 
!  In the beginning, create only 1-2 levels 

!  If any ray hits a cell that does not fulfill the 
stopping criteria, then subdivide cell by finer 
grid Nested Grids 
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Hierarchical Uniform Grid (HUG)                               [1994] 

!  Problem: if the variance among object sizes is very large, then the 
average object size is not a good cell size 

!  Idea: 

!  Group objects by size � "size clusters" 

!  Group objects within a size cluster by location � local size clusters 

!  Construct grid for each local size cluster 

!  Construct hierarchy on top of these elementary grids 

!  Example: 
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Construction Time of Different Grids 

balls gears  mount 

Uniform, D = 1.0  0.19 0.38 0.26 

Uniform, D = 20.0  0.39 1.13 0.4 

Recursive Grid 0.39 5.06 1.98 

HUG 0.4 1.04 0.16 

Quelle: Vlastimil Havran, Ray Tracing News vol. 12 no. 1, June 1999, http://www.acm.org/tog/resources/RTNews/html 

D =

# voxels

# objects
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rings teapot tetra tree 

Uniform, D = 1.0  0.35 0.3 0.13 0.22 

Uniform, D = 20.0  0.98 0.65 0.34 0.33 

Recursive Grid 0.39 1.55 0.47 0.28 

HUG 0.45 0.53 0.24 0.48 
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Running Times of the Ray Tracing (sec) 

Balls Gears  Mount 

Uniform, D = 1.0  244.7 201.0 28.99 

Uniform, D = 20.0  38.52 192.3 25.15 

Recursive Grid 36.73 214.9 30.28 

HUG 34.0 242.1 62.31 
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Rings Teapot Tetra  Tree 

Uniform, D = 1.0  129.8 28.68 5.54 1517.0 

Uniform, D = 20.0  83.7 18.6 3.86 781.3 

Rekursiv  113.9 22.67 7.23 33.91 

HUG 116.3 25.61 7.22 33.48 

Adaptive 167.7 43.04 8.71 18.38 
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Proximity Clouds                                                         [1994] 

!  Thought experiment: 

!  Assumption: we are sitting on the ray at point P and we know that 
there is no object within a ball of radius r around P 

!  Then, we can jump directly to the point 

 
 

!  Assumption: we know this "clearance" radius  
for each point in space 

!  Then, we can jump through space from 
one point to its "clearance horizon" 
and so on … 

!  The general idea is called 
empty space skipping 

!  Comes in many different guises 

d 

P 

X 

X = P +
r

�d�d
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!  The idea works with any other metric, too 

!  Problem: we cannot store the clearance 
radius in every point in space 

!  Idea: discretize space by grid 

! For each grid cell, store the minimum 
clearance radius, i.e., the clearance radius 
that works in any direction (from any point 
within that cell) 

"  Such a data structure is called a  
distance field 

!  Example: 
3 

1 1 1 1 
2 2 2 2 
3 3 3 

3 4 4 4 
3 3 

1 1 1 
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General Rules for Optimization 

!  "Premature Optimization is the Root of All Evil"   [Knuth] 

!  First, implement your algorithm naïve and slow, then optimize! 

!  After each optimization, do a before-after benchmark! 

-  Sometimes/often, optimization turn out to perform worse 

! Only make small optimizations at a time! 

!  Do a profiling before you optimize! 

-  Often, your algorithm will spend 80% of the time in quite different places 
than you thought it does! 

!  First, try to find a smarter algorithm,  
then do the "bit twiddling" optimizations! 

Gabriel Zachmann
Optional
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The Octree / Quadtree 

!  Idea: the recursive grid taken to the extreme 

!  Construction: 

!  Start with the bbox of the whole scene 

!  Subdivide a cell into 8 equal sub-cells 

!  Stopping criterion: the number of objects, and 
maximal depth 

!  Advantage: we can make big strides through 
large empty spaces 

!  Disadvantages: 

!  Relatively complex ray traversal algorithm 

!  Sometimes, a lot of subdivisions are needed to 
discriminate objects 
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Octree/(Quadtree) 

!  What about large objects in octrees? 

!  Must be stored with inner nodes, or … 

!  In leaves only, but then they need to be stored in many nodes 
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The 5D Octree for Rays                                   [Arvo u. Kirk 1987]  

!  What is a ray? 

!  Point + direction = 5-dim. object 

!  Octree over a set of rays: 

!  Construct bijective mapping between 
directions and the direction cube: 

!  All rays in the universe  
are given by the set: 

!  A node in the 5D octree in R = beam in 3D:  

d 

= + 

S2 ⇤ D := [�1, +1]2 ⇥ {±x ,±y ,±z}

U = [0, 1]3

R = U � D
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!  Construction (6x): 

!  Associate object with an octree node ⟷ object intersects the beam 

!  Start with root =                            and the set of all objects  

!  Subdivide node (32 children), if 

-  too many objects are associated with the current node, and 

-  the cell is too large. 

-  Associate all objects with one or more children 

!  The ray intersection test:  

! Map ray to 5D point 

!  Find the leaf in the 5D octree 

!  Intersect ray with its associated objects 

!  Optimizations … 

U ⇥ [�1, +1]2
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Remarks 

!  The method basically pre-computes a complete, discretized 
visibility for the entire scene 

!  I.e., what is visible from each point in space in each direction? 

!  Very expensive pre-computation, very inexpensive ray traversal 

!  The effort is probably not balanced between pre-computation and 
run-time 

!  Very memory intensive, even with lazy evaluation  

!  Is used rarely in practice … 
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kD-Trees 

!  Problem with grid: "teapot in a stadium" 

!  Problem with octrees: 

!  Very inflexible subdivision scheme  
(always at the center of the father cell) 

!  But subdivision in all directions is not always necessary 

!  Solution: hierarchical subdivision that can adapt more flexibly to 
the distribution of the geometry 

!  Idea: subdivide space recursively by just one plane: 

!  Subdivide given cell with a plane 

!  Choose plane perpendicular to one coordinate axis 

!  Free choices: the axis (x, y, z) & place along that axis 

!  "Best known method" [Siggraph Course 2006] 

! … at least for static scenes 
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!  Informal definition: 

!  A kd-tree is a binary tree, where 

-  Leaves contain single objects (polygons) or a list of objects; 

-  Inner nodes store a splitting plane (perpendicular to an axis) and child 
pointer(s) 

!  Stopping criterion: 

-  Maximal depth, number of objects, some cost function, … 

!  Advantages: 

!  Adaptive 

!  Compact nodes (just 8 bytes per node) 

!  Simple and very fast ray traversal 

!  Small disadvantage: 

!  Polygons must be stored several times in the kd-tree 
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Example 

[Slide courtesy Martin Eisemann] 
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3D Visualization 
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Ray-Traversal through a Kd-Tree 

!  Intersect ray with root-box � tmin, tmax 

!  Recursion: 

!  Intersect ray with splitting plane � tsplit 

!  We need to consider the following three cases: 

a)  First traverse the "near", then the "far" subtree 

b) Only traverse the "near" subtree 

c)  Only traverse the "far" subtree 

tmax 

tmin 

tsplit 

far         near 

(a) 

near 

(b) 

far 

(c) 
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Pseudo-Code für die Traversierung 

traverse( Ray r, Node n, float t_min, float t_max ): 
  if n is leaf:  
    intersect r with each primitive in object list,   

 discarding those farther away than t_max 
    return object with closest intersection point (if any) 

  

  t_split = signed distance along r to splitting plane of n 
  near = child of n containing origin of r     // test signs in r.d 
  far  = the "other" child of n 
  if t_split > t_max: 
    return traverse( r, near, t_min, t_max )   // (b) 
  else if t_split < t_min: 
    return traverse( r, far, t_min, t_max )    // (c) 
  else:                                        // (a) 
    t_hit = traverse( r, near, t_min, t_split ) 
    if t_hit < t_split: 
      return t_hit                             // early ray terminat'n 
    return traverse( r, far, t_split, t_max ) 
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Optimized Traversal 

!  Observation: 
! 90% of all rays are shadow rays  

! Any hit is sufficient 

!  Consequence: 
! The order the children of the kD-tree are visited does not matter (in the 

case of shadow rays) � perform pure DFS 

!  Idea: replace the recursion by an iteration 

!  Transform the tree to achieve that: 

1 

6 2 

3 4 5 

1 

6 2 

3 4 5 

1 

6 2 

3 4 5 

1 

2 

3 

4 

5 

6 

- 

Gabriel Zachmann
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!  Algorithm: 

traverse( Ray ray, Node root ): 
  stopNode = root.skipNode 
  node = root 
  while node < stopNode: 
    if intersection between ray and node: 
      if node has primitives: 
        if intersection between primitive and ray: 
          return intersection 
      node ++ 
    else: 
      node = node.skipNode 
  return "no intersection" 

Diplomarbeit … 

Gabriel Zachmann
Optional
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Construction of a kD-Tree 

!  Given: 

!  An axis-lined BBox in the scene ("cell) 

!  At the root, the box encloses the whole universe 

!  List of the geometry primitives contained in this cell  

!  The procedure: 

1.  Choose an axis-aligned plane, with which to split the cell 

2.  Distribute the geometry among the two children 

! Some polygons need to be assigned to both children 

3.  Do a recursion, until the stopping criterion is met 

!  Remark: Each cell (whether leaf or inner node) defines a box, 
without the box ever being explicitly stored anywhere 

!  (Theoretically, such boxes could be half-open boxes, if we start at the 
root with the complete space) 
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On Selecting a Splitting-Plane 

!  Naïve Selection of the Splitting-Plane: 

!  Splitting-Axis: 

-  Round Robin (x, y, z, x, …) 

-  Split along the longest axis 

!  Split-Position: 

-  Middle of the cell 

-  Median of the geometry 

!  Better: Utilize a Cost Function 

! We should choose a splitting plane such that the expected costs of a 
ray test are distributed equally among both subtrees 

!  Try all 3 axes 

!  Search for the minimum along each axis  

!  Choose the axis and split-position with the smallest minimum  
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Motivation der Kostenfunktion 
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!  Split in the middle: 

!  The probability of a ray hitting the left or the right child is equal 

!  But, he expected costs for handling the left or the right child are very 
different!  
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!  Split along the geometry median: 

!  The computational efforts for left or right child are equal 

!  But not the probability of a hit 
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!  Cost-optimized heuristic: 

!  The total expected costs are approximately similar 

-  Probability for a left hit is higher, but on the other hand there are less 
polygons in the left child 
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The Surface Area Heuristic (SAH)         [1990] 

!  Question: How to measure the costs of a given kD-Tree? 

!  Expected costs of a ray test: 

!  Assume, we have reached cell B during the ray traversal 

!  Cell B has children B1, B2 

!  Expected costs = expected traversal time = 

!  Assumptions in the following: 

!  All rays have the same, far away origin 

!  All rays hit the root-BV of the kD-tree 

B1 B2 

B 

C (B) =Prob[intersection with B1]·C (B1)

+Prob[intersection with B2]·C (B2)
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!  Number of rays in a given direction that hit an 

object is proportional to its projected area 

!  Total "number" of rays, summed over  

all possible directions  = 

where � = sum of all projected areas, 

again summed over all possible directions 

!  Crofton's theorem (integral geometry): 

For convex objects,                ,  

where S = area of surface of object 

!  Therefore, the probability is 

A 

4⇡Ā

Prob[ intersection with B1 | intersection with B ] =

Area(B1)

Area(B)

Ā = 1
4S

B

B1
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!  Solution of the "recursive" equation: 

!  How to compute C(B1) and C(B2) respectively? 

!  A simple heuristic: set  

!  The complete Surface Area Heuristic : 
minimize the following function when distributing the set of 
polygons 

C (B) = Area(B1)·N(B1) + Area(B2)·N(B2)

C (Bi) ⇡ # triangles in Bi
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A Stopping Criterion 

!  How to decide whether or not a split is worth-while? 

!  Consider the costs of a ray intersection test in both cases: 

!  No split � costs = 

!  Split      � costs =  

where tp = time for 1 ray-primitive test 
         ts = time for 1 intersection test of ray with  
                splitting plane of the kD-tree node 
          pB =probability, that the ray hits cell B 
          N = number of primitives 

!  In practice, we can make the following simplifying assumptions : 
!  tp = const  for all primitives 

!                               (determined by experiment) 

A 

B C 

tpN

ts + tp(pBNB + pCNC )

tp : ts = 80 : 1
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Remarks 

!  It suffices to evaluate the cost function (SAH) only at a finite set of 
points 

!  The points are the borders of the bounding boxes of the triangles 

!  In-between, the value of the SAH must be worse 

!  Sort all the Bboxes by their boundary coordinates, evaluate the 
SAH at all these points (plane sweep) 

!  Sorting allows golden section search and, thus, a faster evaluation 

A 

B 

C 

a0 b0 a1 b1 c0 c1 

Gabriel Zachmann
Optional
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!  Warning: for other queries (e.g. points, boxes,…) the surface 
area is not necessarily a good measure for the probability! 

!  A straight-forward, better (?) heuristic:  
make a „look-ahead“ 

B11 B21 

B12 B22 

Diplomarbeit … 

C (B) =P[Schnitt mit B1]·C (B1)

+P[Schnitt mit B2]·C (B2)

=P[B1]·( P[B11]C (B11) + P[B12]C (B12) )

+P[B2]·( P[B21]C (B21) + P[B22]C (B22) )

. . .
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!  If the number of polygons is very large (> 500,000, say) �  
only try to find the approximate minimum [Havran et al., 2006]: 

!  Sort polygons into "buckets" 

!  Evaluate SAH only at the bucket borders 

A 
B 

C 

a0 b0 a1 b1 c0 c1 
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Better kd-Trees for Raytracing                                                       [2005] 

!  Before applying SAH, test whether an empty cell can be split off 
that is "large enough" ; if yes, do that, no SAH-based splitting 

!  Additional stopping criterion: 

!  If volume of cell is too small, then no further splitting 

!  Criterion for "too small" (e.g.):  Vol(cell) < �. Vol(root) 

!  Reason: such cells probably won't get hit anyway 

!  Saves memory (lots) without sacrificing performance 

!  For architectural scenes: 

!  If there is a splitting plane that is covered completely by polygons, 
then use it and put all those polygons in the smaller of the two 
children cells 

!  Reason: that way, cells adapt to the rooms of the buildings (s.a. portal 
culling) 

Gabriel Zachmann
Optional
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Storage of a kD-Tree 

!  The data needed per node: 

! One flag, whether the node is an inner node  or a leaf 

!  If inner node: 

-  Split-Axis (uint), 

-  Split-position (float), 

-  2 pointers to children 

!  If leaf: 

-  Number of primitives (uint) 

-  The list of primitives (pointer) 

!  Naïve implementation: 16 Bytes + 3 Bits — very cache-inefficient 

!  Optimized implementation: 

!  8 Bytes per node (!) 

!  Yields a speedup of 20% (some have reported even a factor of 10!) 
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!  Idea of optimized storage: Overlay the data 

!  Assemble all flags in 2 bits 

!  Overlay flags, split-position, and number of primitives 

flags 
2 

mantissa 
23 

exponent 
8 

s 
1 

Number of polygons 
30 

Inner nodes 

Leaves 

Both 

union 
{ 
  unsigned int m_flags;  // both 
  float m_split;   // inner node 
  unsigned int m_nPrims;  // leaf 
}; 

00 = "Leaf" 
01 = "X axis" 
10 = "Y axis" 
11 = "Z axis" 
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!  Für innere Knoten: nur 1 Zeiger auf Kinder 

!  Verwalte eigenes Array von kd-Knoten (nicht malloc() oder new) 

!  Speichere beide Kinder in aufeinanderfolgende Array-Zellen; oder 

!  speichere eines der Kinder direkt hinter dem Vater. 

!  Überlagere Zeiger auf Kinder mit Zeiger auf Primitive 

!  Zusammen: 
class KdNode 
{ 
private: 
  union { 
    unsigned int m_flags;  // both 
    float m_split;   // inner node 
    unsigned int m_nPrims;  // leaf 
  }; 
  union { 
    unsigned int m_rightChild; // inner node 
    Primitive * m_onePrim;     // leaf 
    Primitive ** m_primitives; // leaf 

Falls m_nPrims == 1 

Falls m_nPrims > 1 

Gabriel Zachmann
Optional
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!  Achtung: Zugriff auf Instanzvariablen natürlich nur noch über Kd-
Node-Methoden! 

!  Z.B.: beim Schreiben von m_split muß man darauf achten, daß danach 
(nochmals) m_flags geschrieben wird (ggf. mit dem ursprünglichen 
Wert)! 

!  Beim Schreiben/Lesen von m_nPrims muß ein Shift durchgeführt 
werden! 
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Spatial KD-Trees (SKD-Tree)    [1987/2002/2006] 

!  A variant of the kD-Tree 

!  Other names: BoxTree, "bounding interval hierarchy" (BIH) 

!  Difference to the regular kd-tree: 
!  2 parallel splitting planes per node 

!  Alternative: the 2 splitting planes  
can be oriented differently 

!  Advantage: "straddling" polygons  
need not be stored in both subtrees 
! With regular kD-trees, there are  

2-3 . N more pointers to triangles than 
there are triangles (N),  
N = number of triangles in the scene 

!  Disadvantage: Overlapping child boxes � the traversal can not 
stop as soon as a hit in the "near" subtree has been found 

 
 

L R 

L R 

max(L) min(R) 


